Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative demography elucidates the longevity of parasitic and symbiotic relationships.

Identifieur interne : 000821 ( Main/Exploration ); précédent : 000820; suivant : 000822

Comparative demography elucidates the longevity of parasitic and symbiotic relationships.

Auteurs : Luke B B. Hecht [États-Unis] ; Peter C. Thompson [États-Unis] ; Benjamin M. Rosenthal

Source :

RBID : pubmed:30282650

Descripteurs français

English descriptors

Abstract

Parasitic and symbiotic relationships govern vast nutrient and energy flows, yet controversy surrounds their longevity. Enduring relationships may engender parallel phylogenies among hosts and parasites, but so may ephemeral relationships when parasites colonize related hosts. An understanding of whether symbiont and host populations have grown and contracted in concert would be useful when considering the temporal durability of these relationships. Here, we devised methods to compare demographic histories derived from genomic data. We compared the historical growth of the agent of severe human malaria, Plasmodium falciparum, and its mosquito vector, Anopheles gambiae, to human and primate histories, thereby discerning long-term parallels and anthropogenic population explosions. The growth history of Trichinella spiralis, a zoonotic parasite disseminated by swine, proved regionally specific, paralleling distinctive growth histories for wild boar in Asia and Europe. Parallel histories were inferred for an anemone and its algal symbiont (Exaiptasia pallida and Symbiodinium minutum). Concerted growth in potatoes and the agent of potato blight (Solanum tuberosum and Phytophthora infestans) did not commence until the age of potato domestication. Through these examples, we illustrate the utility of comparative historical demography as a new exploratory tool by which to interrogate the origins and durability of myriad ecological relationships. To facilitate future use of this approach, we introduce a tool called C-PSMC to align and evaluate the similarity of demographic history curves.

DOI: 10.1098/rspb.2018.1032
PubMed: 30282650
PubMed Central: PMC6191686


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative demography elucidates the longevity of parasitic and symbiotic relationships.</title>
<author>
<name sortKey="Hecht, Luke B B" sort="Hecht, Luke B B" uniqKey="Hecht L" first="Luke B B" last="Hecht">Luke B B. Hecht</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge Institute for Science and Education, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thompson, Peter C" sort="Thompson, Peter C" uniqKey="Thompson P" first="Peter C" last="Thompson">Peter C. Thompson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge Institute for Science and Education, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rosenthal, Benjamin M" sort="Rosenthal, Benjamin M" uniqKey="Rosenthal B" first="Benjamin M" last="Rosenthal">Benjamin M. Rosenthal</name>
<affiliation>
<nlm:affiliation>US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA benjamin.rosenthal@ars.usda.gov.</nlm:affiliation>
<wicri:noCountry code="subField">USA benjamin.rosenthal@ars.usda.gov.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30282650</idno>
<idno type="pmid">30282650</idno>
<idno type="doi">10.1098/rspb.2018.1032</idno>
<idno type="pmc">PMC6191686</idno>
<idno type="wicri:Area/Main/Corpus">000655</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000655</idno>
<idno type="wicri:Area/Main/Curation">000655</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000655</idno>
<idno type="wicri:Area/Main/Exploration">000655</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative demography elucidates the longevity of parasitic and symbiotic relationships.</title>
<author>
<name sortKey="Hecht, Luke B B" sort="Hecht, Luke B B" uniqKey="Hecht L" first="Luke B B" last="Hecht">Luke B B. Hecht</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge Institute for Science and Education, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thompson, Peter C" sort="Thompson, Peter C" uniqKey="Thompson P" first="Peter C" last="Thompson">Peter C. Thompson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge Institute for Science and Education, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rosenthal, Benjamin M" sort="Rosenthal, Benjamin M" uniqKey="Rosenthal B" first="Benjamin M" last="Rosenthal">Benjamin M. Rosenthal</name>
<affiliation>
<nlm:affiliation>US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA benjamin.rosenthal@ars.usda.gov.</nlm:affiliation>
<wicri:noCountry code="subField">USA benjamin.rosenthal@ars.usda.gov.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings. Biological sciences</title>
<idno type="eISSN">1471-2954</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Anopheles (parasitology)</term>
<term>Anopheles (physiology)</term>
<term>Demography (methods)</term>
<term>Dinoflagellida (physiology)</term>
<term>Host-Parasite Interactions (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mosquito Vectors (parasitology)</term>
<term>Mosquito Vectors (physiology)</term>
<term>Phytophthora infestans (physiology)</term>
<term>Plasmodium falciparum (physiology)</term>
<term>Population Growth (MeSH)</term>
<term>Primates (physiology)</term>
<term>Sea Anemones (parasitology)</term>
<term>Solanum tuberosum (microbiology)</term>
<term>Solanum tuberosum (physiology)</term>
<term>Swine (parasitology)</term>
<term>Swine (physiology)</term>
<term>Symbiosis (MeSH)</term>
<term>Trichinella spiralis (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Anopheles (parasitologie)</term>
<term>Anopheles (physiologie)</term>
<term>Anémones de mer (parasitologie)</term>
<term>Croissance démographique (MeSH)</term>
<term>Dinoflagellida (physiologie)</term>
<term>Démographie (méthodes)</term>
<term>Humains (MeSH)</term>
<term>Interactions hôte-parasite (MeSH)</term>
<term>Phytophthora infestans (physiologie)</term>
<term>Plasmodium falciparum (physiologie)</term>
<term>Primates (physiologie)</term>
<term>Solanum tuberosum (microbiologie)</term>
<term>Solanum tuberosum (physiologie)</term>
<term>Suidae (parasitologie)</term>
<term>Suidae (physiologie)</term>
<term>Symbiose (MeSH)</term>
<term>Trichinella spiralis (physiologie)</term>
<term>Vecteurs moustiques (parasitologie)</term>
<term>Vecteurs moustiques (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Demography</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Démographie</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Anopheles</term>
<term>Anémones de mer</term>
<term>Suidae</term>
<term>Vecteurs moustiques</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Anopheles</term>
<term>Mosquito Vectors</term>
<term>Sea Anemones</term>
<term>Swine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Anopheles</term>
<term>Dinoflagellida</term>
<term>Phytophthora infestans</term>
<term>Plasmodium falciparum</term>
<term>Primates</term>
<term>Solanum tuberosum</term>
<term>Suidae</term>
<term>Trichinella spiralis</term>
<term>Vecteurs moustiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Anopheles</term>
<term>Dinoflagellida</term>
<term>Mosquito Vectors</term>
<term>Phytophthora infestans</term>
<term>Plasmodium falciparum</term>
<term>Primates</term>
<term>Solanum tuberosum</term>
<term>Swine</term>
<term>Trichinella spiralis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Host-Parasite Interactions</term>
<term>Humans</term>
<term>Population Growth</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Croissance démographique</term>
<term>Humains</term>
<term>Interactions hôte-parasite</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Parasitic and symbiotic relationships govern vast nutrient and energy flows, yet controversy surrounds their longevity. Enduring relationships may engender parallel phylogenies among hosts and parasites, but so may ephemeral relationships when parasites colonize related hosts. An understanding of whether symbiont and host populations have grown and contracted in concert would be useful when considering the temporal durability of these relationships. Here, we devised methods to compare demographic histories derived from genomic data. We compared the historical growth of the agent of severe human malaria,
<i>Plasmodium falciparum</i>
, and its mosquito vector,
<i>Anopheles gambiae</i>
, to human and primate histories, thereby discerning long-term parallels and anthropogenic population explosions. The growth history of
<i>Trichinella spiralis</i>
, a zoonotic parasite disseminated by swine, proved regionally specific, paralleling distinctive growth histories for wild boar in Asia and Europe. Parallel histories were inferred for an anemone and its algal symbiont (
<i>Exaiptasia pallida</i>
and
<i>Symbiodinium minutum</i>
). Concerted growth in potatoes and the agent of potato blight (
<i>Solanum tuberosum</i>
and
<i>Phytophthora infestans</i>
) did not commence until the age of potato domestication. Through these examples, we illustrate the utility of comparative historical demography as a new exploratory tool by which to interrogate the origins and durability of myriad ecological relationships. To facilitate future use of this approach, we introduce a tool called C-PSMC to align and evaluate the similarity of demographic history curves.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30282650</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>08</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2954</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>285</Volume>
<Issue>1888</Issue>
<PubDate>
<Year>2018</Year>
<Month>10</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings. Biological sciences</Title>
<ISOAbbreviation>Proc Biol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative demography elucidates the longevity of parasitic and symbiotic relationships.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">20181032</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rspb.2018.1032</ELocationID>
<Abstract>
<AbstractText>Parasitic and symbiotic relationships govern vast nutrient and energy flows, yet controversy surrounds their longevity. Enduring relationships may engender parallel phylogenies among hosts and parasites, but so may ephemeral relationships when parasites colonize related hosts. An understanding of whether symbiont and host populations have grown and contracted in concert would be useful when considering the temporal durability of these relationships. Here, we devised methods to compare demographic histories derived from genomic data. We compared the historical growth of the agent of severe human malaria,
<i>Plasmodium falciparum</i>
, and its mosquito vector,
<i>Anopheles gambiae</i>
, to human and primate histories, thereby discerning long-term parallels and anthropogenic population explosions. The growth history of
<i>Trichinella spiralis</i>
, a zoonotic parasite disseminated by swine, proved regionally specific, paralleling distinctive growth histories for wild boar in Asia and Europe. Parallel histories were inferred for an anemone and its algal symbiont (
<i>Exaiptasia pallida</i>
and
<i>Symbiodinium minutum</i>
). Concerted growth in potatoes and the agent of potato blight (
<i>Solanum tuberosum</i>
and
<i>Phytophthora infestans</i>
) did not commence until the age of potato domestication. Through these examples, we illustrate the utility of comparative historical demography as a new exploratory tool by which to interrogate the origins and durability of myriad ecological relationships. To facilitate future use of this approach, we introduce a tool called C-PSMC to align and evaluate the similarity of demographic history curves.</AbstractText>
<CopyrightInformation>© 2018 The Authors.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hecht</LastName>
<ForeName>Luke B B</ForeName>
<Initials>LBB</Initials>
<AffiliationInfo>
<Affiliation>Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thompson</LastName>
<ForeName>Peter C</ForeName>
<Initials>PC</Initials>
<Identifier Source="ORCID">0000-0002-9161-167X</Identifier>
<AffiliationInfo>
<Affiliation>Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rosenthal</LastName>
<ForeName>Benjamin M</ForeName>
<Initials>BM</Initials>
<AffiliationInfo>
<Affiliation>US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA benjamin.rosenthal@ars.usda.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>figshare</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.6084/m9.figshare.c.4238561</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Proc Biol Sci</MedlineTA>
<NlmUniqueID>101245157</NlmUniqueID>
<ISSNLinking>0962-8452</ISSNLinking>
</MedlineJournalInfo>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000852" MajorTopicYN="N">Anopheles</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003710" MajorTopicYN="N">Demography</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004141" MajorTopicYN="N">Dinoflagellida</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="Y">Host-Parasite Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072138" MajorTopicYN="N">Mosquito Vectors</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010963" MajorTopicYN="N">Plasmodium falciparum</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011158" MajorTopicYN="N">Population Growth</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011323" MajorTopicYN="N">Primates</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012615" MajorTopicYN="N">Sea Anemones</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017160" MajorTopicYN="N">Trichinella spiralis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">demography</Keyword>
<Keyword MajorTopicYN="Y">domestication</Keyword>
<Keyword MajorTopicYN="Y">genomics</Keyword>
<Keyword MajorTopicYN="Y">parasitism</Keyword>
<Keyword MajorTopicYN="Y">symbiosis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>09</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30282650</ArticleId>
<ArticleId IdType="pii">rspb.2018.1032</ArticleId>
<ArticleId IdType="doi">10.1098/rspb.2018.1032</ArticleId>
<ArticleId IdType="pmc">PMC6191686</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2011 Jul 13;475(7357):493-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21753753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Nov 15;491(7424):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23151582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jul 25;499(7459):471-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23823723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Malar J. 2016 Mar 24;15:182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27013475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Dec 7;552(7683):96-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29186111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24557500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2008 Jun 22;275(1641):1359-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18348962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jun 15;28(12):1647-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2000 Sep;9(9):1363-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10972775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Dec;46(12):1303-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25362486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Oct 4;298(5591):129-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12364791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2012 Nov;180(5):604-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23070321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1998 Sep 1;13(9):356-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21238340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jul 22;333(6041):445-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21778398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 Mar;15(3):264-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1997 Apr;87(4):462-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1931 Mar;16(2):97-159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17246615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 9;103(19):7354-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16651518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2017 Jul 1;34(7):1770-1779</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28379581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jul 10;475(7355):189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21743474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2005 Jul 29;360(1459):1387-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16048782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2009 Feb;24(2):86-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19101058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2006 Sep 22;273(1599):2305-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Mar;43(3):228-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21336279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 May 03;5(5):e10437</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20454653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4425-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2008 Dec;8(6):799-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18718558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2015 Jun 22;282(1809):20141725</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26041354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2013 Aug 5;23(15):1399-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23850284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 May;3(5):380-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11988763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11893-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26324906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jul 24;454(7203):515-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18650923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2016 Apr;116(4):362-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26647653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2017 Feb;49(2):303-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28024154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Apr 11;300(5617):318-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Mar 17;332(6161):258-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3347269</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
<li>Tennessee</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Rosenthal, Benjamin M" sort="Rosenthal, Benjamin M" uniqKey="Rosenthal B" first="Benjamin M" last="Rosenthal">Benjamin M. Rosenthal</name>
</noCountry>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Hecht, Luke B B" sort="Hecht, Luke B B" uniqKey="Hecht L" first="Luke B B" last="Hecht">Luke B B. Hecht</name>
</region>
<name sortKey="Hecht, Luke B B" sort="Hecht, Luke B B" uniqKey="Hecht L" first="Luke B B" last="Hecht">Luke B B. Hecht</name>
<name sortKey="Thompson, Peter C" sort="Thompson, Peter C" uniqKey="Thompson P" first="Peter C" last="Thompson">Peter C. Thompson</name>
<name sortKey="Thompson, Peter C" sort="Thompson, Peter C" uniqKey="Thompson P" first="Peter C" last="Thompson">Peter C. Thompson</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000821 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000821 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30282650
   |texte=   Comparative demography elucidates the longevity of parasitic and symbiotic relationships.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30282650" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024